ФГАОУ ВО РУТ (МИИТ) МЕЖРЕГИОНАЛЬНАЯ ОТРАСЛЕВАЯ ОЛИМПИАДА ШКОЛЬНИКОВ «ПАРУСА НАДЕЖДЫ» ПО ПРОФИЛЮ «МАТЕМАТИКА» 2022-2023 УЧ. ГОД

Краткие решения к заданиям очного тура 11 класс

Вариант 1

Задание 1.

Пусть U_1 — скорость первого всадника (из A), U_2 — скорость второго всадника (из B). Пусть до встречи со вторым всадником 1 проедет путь — S_1 , второй путь — S_2 . Тогда по условиям задачи

$$\frac{S_2}{U_1}=27$$
 минут, $\frac{S_1}{U_2}=12$ минут, $S_2=27U_1$, $S_1=12U_2$.

Также:
$$\frac{S_1}{U_1} = \frac{S_2}{U_2}$$
. Поэтому $\frac{12U_2}{U_1} = \frac{27U_1}{U_2} = > 4 \frac{U_2}{U_1} = 9 \frac{U_1}{U_2}$

$$\frac{\text{U}_2}{\text{U}_1}=\frac{3}{2}$$
. Отсюда находим, что $\frac{12\text{U}_2+27\text{U}_1}{\text{U}_2}=12+27*\frac{2}{3}=30$ минут, а

тогда
$$\frac{12U_2+27U_1}{U_1} = 12\frac{U_2}{U_1} + 27 = 27 + 18 = 45$$
 минут.

Ответ: 30 минут и 45 минут

Задание 2.

OTBET:
$$x^5 + x + 1 = (x^2 + x + 1)(x^3 - x^2 + 1)$$

Задание 3.

Пусть x_1, x_2, x_3, x_4, x_5 корни уравнения. По теореме Виета $x_1 + x_2 + x_3 + x_4 + x_5 = 5$, $x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 = 1$. Из неравенства о среднем геометрическом и среднем арифметическом следует, что $1^5 = \sqrt{x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5} \le \frac{x_1 + x_2 + x_3 + x_4 + x_5}{5} = 1$. А тогда из равенства средних получим, что все корни равны 1^5 , поэтому $x^5 - 5x^4 + ax^3 + bx^2 + cx - 1 = (x - 1)^5$. Отсюда по формуле бинома Ньютона находим ответ: a=10; b=-10: c=5

Задание 4.

$$\sqrt{10 + 2\sqrt{6} + 2\sqrt{10} + 2\sqrt{15}} = \sqrt{2 + 3 + 5 + 2\sqrt{2 \cdot 3} + 2\sqrt{2 \cdot 5} + 2\sqrt{3} \cdot 5} =$$

$$= \sqrt{(\sqrt{2} + \sqrt{3} + \sqrt{5})^2} = \sqrt{2} + \sqrt{3} + \sqrt{5}.$$
 Так как

$$\sqrt{2}$$
 < 1,42; $\sqrt{3}$ < 1,74; $\sqrt{5}$ < 2,24, to

 $\sqrt{2}+\sqrt{3}+\sqrt{5}<1,42+1,74+2,24=5,4.$ Следовательно число слева меньше числа справа.

Ответ: первое число (радикал) меньше второго.

Задание 5.

Группируя слагаемые, систему можно представить в виде: $\begin{cases} y - z - \frac{2}{x - z} = 3 \\ y + x - \frac{3}{z - 1} = 9 \end{cases}$

Так как по условию x; y; z — целые числа, то из второго уравнения следует, что $z=\{0,-2,2,4\}$. Вычитаем из второго уравнения первое уравнение, получим: $x+z-\frac{3}{z-1}+\frac{2}{x-z}=6$. Будем подставлять в это уравнение возможные значения z. При z=0 $x^2-3x+2=0$, значит либо x=1, либо x=2. Отсюда при x=1 y=5, при x=2 y=4. Для других значений z система не будет иметь целых решений.

Ответ: (1;5;0), (2;4;0)

Задание 6.

Обозначим $\sin x = a$ $\cos x = B$, тогда: $a^3 + aB - 2a - 2a^2B + 4B = 0$. Группируя слагаемые, получим $a^2(a-2B) + a(B-2) + 2B(2-B) = 0$. Отсюда $a^2(a-2B) + (B-2)(a-2B) = 0$, $(a-2B)(a^2+B-2) = 0$. Следовательно, $(\sin x - 2\cos x)(\sin^2 x\cos x - 2) = 0$. Из уравнения $\sin x - 2\cos x = 0$ получим tgx = 2, $x = arctg2 + k\pi$ $k \in Z$. Второе уравнение очевидно не имеет решений по свойству $\sin x$ и $\cos x$. Равенство $\sin^2 x = \cos x = 1$ невозможно.

Otbet: { arctg2 + $k\pi$ $k \in Z$ }

Задание 7.

ОД3:x > 3, x ≠ 4.

Имеем:
$$\log_{x-3}|x-4|<\log_{x-3}(x-3)^2$$
. Тогда возможны два случая: $\begin{cases} x-4< x^2-6x+9 \\ x>4 \end{cases} <=> \begin{cases} x^2-7x+13>0 \\ x>4 \end{cases} > x>4$ $\begin{cases} x<4 \\ x-4>x^2-6x+9 \end{cases} <=> \begin{cases} x<4 \\ x^2-5x+5>0 \end{cases} > x=\frac{5\pm\sqrt{5}}{2}$ с учетом ОДЗ

получим ответ: $(x > 4) \cup (3; \frac{5 \pm \sqrt{5}}{2})$

Задание 8.

Легко увидеть, что три прямые разбивают плоскость на 7 частей. Тогда 4 прямые могут разбить плоскость на 11 частей, так как четвертая прямая пересекает три данные прямые, делится точками пересечения на 4 части (каждая часть прямой разбивает каждую часть плоскости, через которую проходит (таких частей 4) еще на 2 части). Следовательно, число частей плоскости увеличится на 4, и будет 7 + 4 = 11 частей.

Аналогично находим, что число m_5 частей, на которые могут разделить плоскость пять прямых, будет равно: $m_5 = m_4 + 5 = 16$, где $m_4 -$ число разбиений плоскости 4 прямыми. Аналогично находим, что $m_6 = m_5 + 6 = 22$.

Ответ: {22}

ФГАОУ ВО РУТ (МИИТ) МЕЖРЕГИОНАЛЬНАЯ ОТРАСЛЕВАЯ ОЛИМПИАДА ШКОЛЬНИКОВ «ПАРУСА НАДЕЖДЫ» ПО ПРОФИЛЮ «МАТЕМАТИКА» 2022-2023 УЧ. ГОД

Краткие решения к заданиям очного тура 11 класс

Вариант 2

Задание 1.

Скорость велосипедиста при попутном ветре, согласно условию задачи, равна $\frac{1}{3}$ км/мин., при встречном ветре $\frac{1}{5}$ км/мин.. тогда собственная скорость велосипедиста равна полусумме двух указанных скоростей, а именно $\frac{1}{2}(\frac{1}{3}+\frac{1}{5})=\frac{4}{15}=\frac{1}{3\frac{3}{4}}\frac{\text{км}}{\text{мин}}$. Отсюда получаем, что велосипедист в безветренную погоду проезжает 1 км за 3 минуты 45 секунд.

Ответ: 3 минуты 45 секунд.

Задание 2.

$$(x + y + z)^{3} - x^{3} - y^{3} - z^{3} = x^{3} + 3x^{2}(y + z) + 3x(y + z)^{2} +$$

$$+ (y + z)^{3} - x^{3} - y^{3} - z^{3} = 3x^{2}(y + z) + 3x(y + z)^{2} + (y + z)^{3} - y^{3} - z^{3} = 3x^{2}y + 3x^{2}z + 3xy^{2} + 6xyz + 3xz^{2} + y^{3} + 3zy^{2} +$$

$$+ 3yz^{2} + z^{3} - y^{3} - z^{3} = 3(x^{2}(y + z) + xy^{2} + yxz + xz(y + z) + y +$$

$$+ z(y + z) = 3(y + z)(x^{2} + xy + xz + yz) = 3(y + z)(x(x + y) + z(x + y))$$

$$+ (y + z)^{3} - x^{3} - y^{3} - z^{3} = 3x^{2}(y + z) + 3x(y + z)^{2} + (y + z$$

Otbet: 3(y+z)(x+y)(x+z)

Задание 3.

По теореме Виета $x_1 + x_2 + x_3 + x_4 = 4$, $x_1 \cdot x_2 \cdot x_3 \cdot x_4 = 1$, где x_i — корни $i=1,\dots 4$. Из неравенства о среднем геометрическом и

среднем арифметическим имеем: $1 = \sqrt{x_1 \cdot x_2 \cdot x_3 \cdot x_4} \le \frac{x_1 + x_2 + x_3 + x_4}{4} \le 1$. Из равенства средних следует, что все корни этого уравнения равны 1. А тогда $x^4 - 4x^3 + ax^2 + bx + 1 = (x - 1)^4 = 0$ a = 6, b = -4

Ответ: a = 6, b = -4

Задание 4.

$$\sqrt{15 + \sqrt{60} + \sqrt{84} + \sqrt{140}} = \sqrt{3 + 2\sqrt{15} + 2\sqrt{21} + 5 + 7 + 2\sqrt{35}} =$$

$$= \sqrt{(\sqrt{3} + \sqrt{5} + \sqrt{7})^2} = \sqrt{3} + \sqrt{5} + \sqrt{7}, \text{ так как } \sqrt{3} > 1,70, \sqrt{5} > 2,20,$$

$$\sqrt{7} > 2,60, \text{ а } 1,70+2,20+2,60=6,50, \text{ то число слева (радикал)}$$

больше числа справа.

Ответ: первое число больше.

Задание 5.

Группируя слагаемые, систему можно записать в виде:

$$\begin{cases} x - y + 3 = \frac{2}{x - z} \\ \frac{3x - 2}{x - 1} = \frac{z + y}{3} \end{cases} <==> \begin{cases} x - y + 3 = \frac{2}{x - z} \\ 3 + \frac{1}{x - 1} = \frac{z + y}{3} \end{cases}$$
. Так как x, y, z целые числа,

то из второго уравнения следует, что x=0 или x=2. При x=0

имеем: $\begin{cases} 3-y=-\frac{2}{z} \\ z+y=6 \end{cases}$ Складывая эти уравнения, получим z=1, z=2,

при z=1 y=5, при z=2 y=4. При x=2 имеем $z^2+9z+16=0=\gg$ целых корней нет.

Ответ: (0;4;2), (0;5;1)

Задание 6.

Пусть $\sin x = a \cos x = B$, тогда $B^2 + a^2B - 2B - 4a^3 - 4aB + 8a = 0$. Группируя слагаемые, получим: $B(a^2 + B - 2) - 4a(a^2 + B - 2) = 0$. А тогда $(\sin^2 x + \cos x - 2)(\cos x - 4\sin x) = 0$. Отсюда: $\sin^2 x + \cos x - 2 = 0$ или $\cos x - 4\sin x = 0$. Первое уравнение решений не имеет, так как равенства: $\sin^2 x = 1$, $\cos x = 1$ одновременно невозможны, поэтому $4\sin x = \cos x = \gg$ $= \gg \operatorname{tg} x = \frac{1}{4}$, $x = \operatorname{arctg} \frac{1}{4} + \pi k$

Otbet:{ $arctg \frac{1}{4} + \pi k \ k \in Z$ }

Задание 7.

ОДЗ
$$x \neq 0, x \neq \frac{1}{2}$$
 $x < 3$. Далее запишем, $\log_{|1-2x|}(3-x) \geq \log_{|1-2x|}|1-2x|$ Здесь возможны два случая: 1) $\begin{cases} |1-2x| > 1 \\ 3-x \geq |1-2x| \end{cases} <=>$ $\begin{cases} x < 0 \\ x > 1 \\ (3-x)^2 \geq (1-2x)^2 \end{cases}$ $<=>$ $\begin{cases} x < 0 \\ x > 1 \\ 3x^2 + 2x - 8 \leq 0 \end{cases}$ $<=> (-2 \leq x < 0); 1 < x \leq \frac{4}{3}.$

Второй случай, когда |1 - 2x| < 1.

Тогда получаем:
$$\begin{cases} -1 < 1 - 2x < 1 \\ 3x^2 + 2x - 8 > 0 \end{cases} => \begin{cases} 0 < x < 1 \\ x \le -2; x > \frac{4}{3} => \text{ нет } \end{cases}$$
решений.

Ответ:
$$[-2; 0) \cup (1; \frac{4}{3}]$$

Задание 8.

Две непараллельные прямые разбивают плоскость на 4 части. Три прямые разбивают плоскость на 7 частей. Четвертая прямая, пересекая три данные прямые, делится точками пересечения на 4 части. Каждая часть прямой разбивает каждую часть плоскости, через которую проходит (таких частей имеется 4) еще на 2 части. Таким образом, число частей плоскости увеличивается на 4. Всего окажется 7 + 4 = 11 частей плоскости.

Ответ: {11}

ФГАОУ ВО РУТ (МИИТ) МЕЖРЕГИОНАЛЬНАЯ ОТРАСЛЕВАЯ ОЛИМПИАДА ШКОЛЬНИКОВ «ПАРУСА НАДЕЖДЫ» ПО ПРОФИЛЮ «МАТЕМАТИКА» 2022-2023 УЧ. ГОД

Краткие решения к заданиям очного тура 11 класс

Вариант 3

Задание 1.

Пусть по пути в одну сторону автобус поднимается в гору на участках одного типа суммарной длины S_1 , а спускается с горы на участках другого типа длины S_2 . Тогда по пути в обратную сторону он будет, наоборот, спускаться с горы на участках первого типа и подниматься в гору на участках второго типа. Поэтому на проезд туда и обратно автобус затратит в общей сложности количество часов, равное $\frac{S_1}{30} + \frac{S_2}{60} + \frac{S_1}{30} + \frac{S_2}{30} = (S_1 + S_2) \left(\frac{1}{30} + \frac{1}{60}\right) = (S_1 + S_2) * \frac{1}{20} = 2$. Т.е. длина пути $S_1 + S_2$ между селениями равна 40 км.

Ответ: 40.

Задание 2.

Пусть $x^2 - y^2 - x + 3y - 2 = (x + y + a)(x - y + b) = x^2 - y^2 + (a + b)x + ba$. Отсюда a + b = -1, b - a = 3, ab = -2. Отсюда находим, что b = 1, a = -2. Таким образом, $x^2 - y^2 - x + 3y - 2 = (x + y - 2)(x - y + 1)$.

Otbet: (x + y - 2)(x - y + 1)

Задание 3.

Если $x_i(i=1,\dots 6)$ корни, то по т. Виета их сумма равна 6, а сумма $x_1x_2+x_1x_3+\dots+x_5x_6=15$. Докажем, что если для чисел $b_1,\dots b_n$ сумма равна n, то сумма попарно различных произведений $\leq \frac{n(n-1)}{2}$, причем равенство достигается лишь тогда и только тогда, когда $b_1=b_2=\dots b_n=1$. В самом деле, имеем $2(b_1b_2+\dots+b_{n-1}b_n)=(b_1+\dots+b_n)^2-(b_1^2+\dots+b_n^2)=n^2-(b_1^2+\dots+b_n^2)$, тогда по неравенству Коши $(b_1^2+b_2^2+\dots+b_n^2)n\geq (b_1+\dots+b_n^2)$

 $+b_2+\cdots+b_n)^2$. Отсюда имеем $-(b_1^2+b_2^2+\cdots+b_n^2)\leq -\frac{1}{n}(b_1+b_2+\cdots+b_n^2)$ $+b_n^2$. Следовательно $n^2-(b_1^2+\cdots+b_n^2)\leq n^2-\frac{1}{n}(b_1+b_2+\cdots+b_n^2)=$ $+b_n^2-n=n(n-1)$, т.е. утверждение верно. При n=6, $\frac{n(n-1)}{2}=15$, значит все $x_i=1$. А тогда: $x^6-6x^5+15x^4+ax^3+bx^2+cx+d=(x-1)^6$. Поэтому, раскрывая скобки по формуле Бинома Ньютона, получаем:

Ответ: a = -20, b = 15, c = -6, d = 1.

Задание 4.

$$\sqrt{15+2\sqrt{12}+2\sqrt{14}+2\sqrt{42}}=\sqrt{2+6+7+2\sqrt{12}+2\sqrt{14}+2\sqrt{42}}=$$
 = $\sqrt{(\sqrt{2}+\sqrt{6}+\sqrt{7})^2}=\sqrt{2}+\sqrt{6}+\sqrt{7}$. С другой стороны, $\sqrt{2}>1,40,\sqrt{6}>$ > $2,40,\sqrt{7}>2,60$. Следовательно $\sqrt{2}+\sqrt{6}+\sqrt{7}>6,40$ поэтому первое число (слева) больше второго числа (справа).

Ответ: первое число больше.

Задание 5.

Преобразуя второе уравнение системы, получим:

2y-3=(x-z)(y-2), отсюда $2+\frac{1}{y-2}=x-z$. Так как y - целое, то y = 1 и y = 3. При y = 1 получим x=z+1; при y = 3, x=z+3. Рассмотрим первый случай. Подставляя y = 1, x=z+1 в первое управление системы, получим $z^2-4z-5=0$.

Значит $z_1 = -1$, $z_2 = 5$. Поэтому $x_1 = 0$, $x_1 = 8$. Имеем два решения системы: (0, 1, -1) и (6, 1, 5). Во втором случае при y = 3 и x = z + 3 получаем уравнение

 $z^2 - 6z - 5 = 0$. Это уравнение не имеет целых решений.

Ответ: (0, 1, -1) и (6, 1, 5).

Задание 6.

Обозначим $\sin x = a$, $\cos x = b$. Тогда получим уравнение: $2ab^3 - 2a^2b + 4ab^2 - 8ab - 2b^3 + 2ab - 4b^2 + 8b = 0$. Сокращая это уравнение на 2 и вынося за скобки общий множитель b, получим $(ab^2 - a^2 + 2ab - 4a + a + 4 - b^2 - 2b)b = 0$. А тогда имеем: $(a(b^2 - a + 2b - 4) - (b^2 + 2b - a - 4))b = 0$. Отсюда: $b(b^2 + 2b - a - 4)(a - 1) = 0$. Поэтому получаем: $b = \cos x = 0$, $a = \sin x = 1$ и $\cos^2 x + 2\cos x - \sin x - 4 = 0$. Поэтому имеем: $x = \frac{\pi}{2} + \pi k$, $x = \frac{\pi}{2} + 2\pi m$. Последнее равенство будет, если $\cos 2x = 1$, $\sin x = -1$, что невозможно.

Ответ: $x = \frac{\pi}{2} + \pi k \ k \in \mathbb{Z}$.

Задание 7.

Находим ОДЗ 1-x>0, $1-x\ne 1$, $2x-1>0 \Rightarrow \frac{1}{2}< x<1$. Отсюда следует, что в области ОДЗ основание логарифма меньше единицы. Поэтому $\log_{1-x}(2x-1)\ge\log_{1-x}(1-x)\Rightarrow 2x-1\le 1-x$, т.е. $x\le \frac{2}{3}$.

Otbet:
$$\frac{1}{2} < x \le \frac{2}{3}$$
.

Задание 8.

Две непараллельные прямые разбивают плоскость на четыре части. Если добавить еще одну прямую, то нетрудно видеть, что число разбиений плоскости будет равно 4+3=7. Если провести еще одну прямую, то эта четвертая, пересекая три данные прямые делится точками пересечения на 4 части и, следовательно, число частей плоскости увеличивается на 4. Всего окажется 7+4=11 частей плоскости. Теперь, если провести ещё одну прямую, то число разбиений плоскости m_5 пятью прямыми будет равно:

$$m_5 = m_4 + 5 = 16.$$

Ответ: 16.